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Fig. 1: In this paper, we explore how three different visual tools may aid robotics debugging. Shown above are identical 
snapshots in time during a robot object detection task. Each tool varies in their display of the robot’s sensor and state information, 
annotated with yellow numbers that are described in Table I.

Abstract—Programming robots is a challenging task exacer- 
bated by software bugs, faulty hardware, and environmental fac- 
tors. When coding issues arise, traditional debugging techniques 
such as output logs or print statements that may help in typical 
computer applications are not always useful for roboticists. As a 
result, roboticists often leverage visualizations that depict various 
aspects of robot, sensor, and environment states. In this paper, we 
explore various design approaches towards such visualizations for 
robotics debugging support, including 3D visualizations presented 
on 2D displays, as in the popular RViz tool within the ROS 
ecosystem, visualizations in a two-dimensional graphical user 
interfaces (2D GUI), and emerging immersive three-dimensional 
(3D) augmented reality (AR). We present a qualitative evaluation 
of feedback gathered from 24 roboticists across two universities 
who used one of these debugging tools and synthesize design 
guidelines for advancing robotics debugging interfaces. 

Index Terms—Augmented Reality (AR); Mixed Reality (MR); 
visualization; interface design; robots; debugging; HRI; HCI

I.  I  NTRODUCTION

Programming robots is difficult. In addition to standard 
challenges faced by any computer programmer, such as 
syntax, logic, compilation, or runtime errors, roboticists must 
also deal with complications caused by system variability 
from environmental factors and unreliable hardware. Typical 
debugging techniques, such as printing raw data to the console 
or log files, can be tedious and often confusing as robots 
may contain a variety of motors and sensors with a range of

complex data types. To address this issue, roboticists often 
make use of visualizations of robot state data. For example, 
end effector transformations can be difficult to interpret and 
validate via logs of matrix data, but when inspected through 
3D visualizations, can be easily confirmed.

While there has been significant research in the human-robot 
interaction (HRI) community that explores visualizations of 
robot state and for end-users [1]–[7], to date there has been 
limited work specifically focusing on visualization design for 
roboticists. This paper seeks to address this gap by treating 
roboticists themselves as the “human” component of human- 
robot interaction and investigating how different modalities 
and presentations of robot data may support robot debugging.

One of the most widely used tools for robotics programming 
across both academic research and industry settings is the 
Robot Operating System (ROS). RViz, a central component of 
the ROS ecosystem, enables roboticists to visualize 3D data 
on a 2D monitor [8]. Examples of these visualizations include 
point clouds, object affordances, and robot models [9]–[11]. 
While commonly used, little work has been done to evaluate 
the design choices of this tool. For example, RViz contains 
a clear design flaw in its use of rainbow color schemes for 
data encoding [12], [13]. Aside from RViz, other roboticists 
leverage 2D visualizations. For example, Zaman et al. [14] 
and Aini et al. [15] observed their mobile robots from a top
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down view to visualize environment mapping, location, and 
sensor data. While 2D GUIs are prevalent in literature, we have 
found limited work focusing on their design for development 
and debugging or enabling reasoning over potential design 
trade-offs between RViz and 2D GUI approaches. 

In addition to RViz and 2D GUIs, 3D immersive AR 
visualizations are emerging as a third modality for visualizing 
robot data for end-users [1], [2], [5]–[7], [16], [17]. To date, 
there have been no detailed explorations investigating the use 
of AR visualizations for robotics debugging. However, prior 
work by Collett and MacDonald found benefits to using 2D AR 
annotations in their ARDev system for robot debugging [18]. 
While promising, ARDev could only provide 2D visualizations 
displayed on a TV screen (i.e., 2D AR overlays [19]), which 
lack stereo depth cues, has a fixed field-of-view, and require 
that users translate their perspective into a different context 
(a top-down view). Such setups separate data from its context 
and can reduce a user’s performance on tasks related to 
spatial understanding and robot control [7], [20], [21]. Modern 
AR head-mounted displays (ARHMDs) can eliminate these 
issues by projecting visualizations directly within a single, 
unified context in the user’s real environment. Thus we believe 
ARHMDs hold great potential for robotics debugging. 

Contributions: In this work, we conceptually replicated [18] 
to investigate robotics debugging. We performed a qualitative 
evaluation, inspired by the design study methodology of [22], 
to compare debugging between RViz, a 2D GUI, and AR with
24 roboticists. Our novel contributions include: (1) exploring 
AR with a modern ARHMD (vs 2D AR annotations on a 
top-down screen as in [18]), (2) investigating debugging in 
the context of modern robotics programming with ROS ([18] 
did not use ROS), (3) comparing AR to an industry-standard 
tool RViz (vs [18] which only compared fixed screen AR to 
a 2D GUI), and (4) collecting data from substantially more 
roboticists (24 in our study vs 5 in [18]) with more experience 
(29% of our users had � 3 years vs in [18] all had  3 years). 
Finally, we present a thematic analysis of our findings and 
offer design guidelines for developing future systems aimed at 
advancing robotics by supporting roboticists themselves.

II.  R ELATED W ORK

In this section, we discuss prior work related to debugging, 
human-robot interfaces, and augmented reality.

A. Debugging Code
Debugging in its most basic terms is defined as “the attempt 

to pinpoint and fix the source of an error” [23]. To better 
understand this process, Lawrence et al. applied the information 
foraging theory, that models the programmer as a predator 
following information scents while navigating through their 
code topology to find their prey: the bug in their code [24]. 
In practice, debugging is a complex process influenced by a 
user’s experience level and the tools they have at their disposal. 
Various techniques have been developed to aid with this process, 
such as program slicing, answering reachability questions, and 
answering why lines [25]–[27]. However, these approaches

are difficult to implement on distributed systems, such as 
robots, where two executions of the same program may provide 
different results due to communication delays, hardware errors, 
or environmental instability. Other researchers have also used 
time-coded example data and a timeline interface to program 
and debug code visually [28]. Still, these interfaces require that 
the user gather large amounts of high quality video data, and 
inhibits the generalization of their program to varying tasks. 
Our research explores how visual debugging tools may fill 
these gaps by providing real-time debugging information to 
help roboticists quickly pinpoint and fix errors.

B. Human-Robot Interfaces & Augmented Reality
To date, most HRI interface research has focused on 

supporting end-users with non-programming tasks such as 
enhancing situational awareness or system usability (see [29] 
for a survey and relevant links to data visualization). Within 
this space, researchers are increasingly leveraging AR as a 
tool to improve user interactions with robots ([30] & [31] 
provide surveys). Prior to the introduction of modern ARHMDs, 
researchers developed applications that overlaid data on 2D 
screens to better communicate the state of mobile robots, 
manipulators, and robotic swarms [3], [18], [32], [33]. Such 
2D annotations have shown promise, but are limited by a 
lack of stereopsis as a depth cue and fixed display windows. 
It also forces users to shift perspectives between their real- 
world view and a screen. More recent work has investigated 
the use of ARHMDs to reduce or eliminate these issues for 
end-users, finding that immersive AR can produce benefits for 
robot control [5], [17], [34], [35] and robot learning [16], [36]. 
While this research exhibits how AR may aid end-users with 
understanding system behaviors, they do not focus on users 
who are fixing their robot code. 

Other work has explored AR systems with the intention 
of robotics education. For example, researchers have studied 
how AR tablets may assist K–12 students in understanding 
robots [37]–[39]. While this helps provide insight into how 
to educate new roboticists, our focus is roboticists that are 
already experienced developers. Similar to the AR debugging 
system we develop in this work, Muhammad et al. and Cleaver 
et al. created an AR framework for visualizing sensor data 
obtained from a robot [39], [40]. While robot debugging is 
identified as a potential application for their system, their 
work focuses primarily on communicating robot motion intent 
and improving robotics education [39], [40]. The only prior 
research we can identify that is directly aligned with our goals 
is Collett and MacDonald’s work on ARDev [18], as described 
earlier. We extend [18] by investigating modern immersive AR, 
using current robotics programming (i.e., ROS) contexts, and 
including comparisons to industry-standard tools (i.e., RViz), 
while drawing on interface design principles from Human- 
Computer Interaction (HCI) [41], [42] and principles from 
Visualization (VIS). One such principle includes sensemaking— 
the process of how humans work with information [43]—to 
explore how we may further improve debugging tools for 
roboticists and advance progress in the field overall.
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III.  C OMPARING V ISUAL ROBOTICS D EBUGGING TOOLS

In this work, we compared existing and emerging visualiza- 
tion tools that support robotics debugging. We ran a qualitative 
expert evaluation with 24 roboticists across two universities. 
Below, we provide study and implementation details.

A. Study Design 
Our study was a 3 ⇥ 1, between-participants design where 

each participant used one of three visualization aids (RViz, 2D 
GUI, or AR) when programming a robot to complete two tasks. 
Our overall approach was akin to that of a Design Study [22] 
to gain expert feedback on each visual debugging tool.

B. Programming Tasks 
Our study presented roboticists with two programming 

problems, both of which were modified versions of tasks 
initially proposed by Collett and MacDonald as representative 
of standard applications robot developers typically code: a 
detection task and a finder task [18]. Participants completed 
these tasks in the context of programming and debugging 
a TurtleBot 2, a low-cost, differential drive mobile robot 
commonly used as an entry machine by roboticists. 

For the detection task, participants were given 30 minutes 
to program a TurtleBot to detect a QR code 1.5m in front of 
the robot’s camera, drive up to it, and stop within 0.6m of the 
QR code. For the finder task, participants were given 1 hour 
to program a TurtleBot to search a room for a QR code placed 
in an unknown location, drive up to it, and stop within 0.6m 
of the QR code. These tasks required object detection and 
navigation thus requiring the programmer to take advantage 
of multiple forms of data and control sequences. We provided 
participants with a pre-configured ROS directory containing 
an autonomous robot framework that included files for EKF- 
SLAM for localization, A* for path planning, Pure Pursuit for 
path following, and OpenCV to track QR codes. Participants 
coded within this directory using either Python or C++.

C. Robot Debugging Data Visualization Tools 
As participants completed their programming tasks, they 

inevitably made errors that needed to be debugged. Participants 
were provided one of three different visual debugging tools that 
highlight various approaches for how interfaces might display 
robot data. This enables a comparison of a breadth of design 
factors such as 2D (2D GUI) vs 3D (RViz) vs immersive 3D 
(AR) and separate visualization context (RViz and 2D GUI) 
vs integrated context (AR).

• RViz is a commonly-used 3D visualization tool for 
robotics. It can display a robot model, environment maps, 
and sensor data via a graphical user interface on a monitor 
(Figure 1a). To interface with RViz, participants used their 
mouse left, right, and middle clicker to move the virtual 
camera and edit the visualizations in the environment.

• We created a 2D GUI as a replication of Collett and 
MacDonald’s 2D GUI from Player/Stage [18]. It displays 
similar visualizations as RViz and the immersive AR tools, 
but from a top-down perspective (Figure 1b). To interact

with this tool, the w, a, s and d keys enabled traversal in 
the vertical and horizontal directions while the keys i and 
o enabled zooming in/out.

• We developed an immersive AR debugging interface 
that leverages the HoloLens ARHMD to project in situ 
visualizations within the wearer’s workspace (Figure 1c). 
The HoloLens was untethered from the development 
computer, allowing users to freely move through the 
environment and see visualizations from any angle. It also 
displayed coordinates and measured distances when the 
user interacted with the map grid through the HoloLen’s 
air-tap feature. This was an added feature recommended by 
Collett and MacDonald’s work and was not implemented 
as a feature on the RViz or the 2D GUI because roboticists 
do not typically use these tools on these applications. 
Our AR design also addresses technological limitations of 
Collett and MacDonald’s work (i.e., using 2D AR overlays 
on separate screens vs an ARHMD). We used ROS# [44] 
to send the data from ROS to our AR application. 

All three interfaces provide a different medium for visually 
representing data (2D, 3D on a 2D screen, and immersive 
3D). To reason over how robot data might be effectively 
translated to its visual representation at the interface level, 
Collett and MacDonald identified four principle data types:
geometric data with an intrinsic visual representation using 
points, lines and shapes (e.g., a robot model to represent 
position); vector data with a magnitude and an orientation 
(e.g., a planned path between two points); scalar data with 
only a magnitude (e.g., a robot’s speed or mass); and abstract 
data without an intrinsic visual representation (e.g., a robot’s 
state) [18]. We extend this framework by splitting abstract 
into four categories: text data expressed verbally (e.g., grid 
coordinates); raster data with a grid of scalar values that 
can include multiple information bands (e.g., an occupancy 
grid); categorical data with distinct attributes that belong to a 
specific concept (e.g., a robot’s state); and boolean data that is 
true/false, yes/no, or 0/1 (e.g., the result of a conditional). These 
primitive abstractions (i.e., “data types”) can inform a designer’s 
choice of visual encodings when referencing established 
visualization principles. For example, categorical information 
can be readily encoded using color, specifically by multiple 
hues [45]. As robot data may be visualized in a multitude of 
ways, determining the high level data types may aid developers 
with identifying corresponding visualization techniques that 
most clearly communicate important information to the users. 
See Table I for a complete list of rendered data types in each 
visual debugging tool.

D. Environment 
Two locations were used, one robotics laboratory at the 

University of Colorado at Boulder and the other at Colorado 
School of Mines. These locations were chosen to simulate 
environments participants typically code and debug robots in. 
Both rooms measured approximately 5m ⇥ 5m ⇥ 3m, each 
containing one workstation for the programmers to code on. 
A 0.3m ⇥ 0.3m ⇥ 0.9m box with a 0.18m ⇥ 0.18m QR code
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TABLE I: The robot sensor and state data provided to the participant, its associated ROS message type, data type, visualization 
description and the debugging tool it was displayed in. The legend corresponds to its respective value in Figure 1.

Data Message Type Data Type Description of Visualization AR2D GUIRViz Fig. 1 Legend

Occupancy Grid nav_msgs/OccupancyGrid Raster Obstacles in the environment via the Occupancy Grid mapping algorithm ✓✓✓ 2
Position nav_msgs/Odometry Geometric   e position and orientation of the Turtlebot ✓✓✓ 3

Waypoint Path nav_msgs/Path Vector   e planned path using A* on the user’s input waypoints ✓✓✓ 4

Laser Scan sensor_msgs/LaserScan Vector LIDAR data from the ASUS XTION ✓✓✓ 1

Waypoint Path History nav_msgs/Path Vector   e previously traversed path of the robot ✓✓✓ 5
Raw QR Position perception/Landmarks Geometric   e detected position of a QR code using OpenCV ✓✓✓ 6

Estimated QR Position perception/Landmarks Geometric   e estimated position of the QR codes via EKF SLAM ✓✓✓ 7
Look Ahead Point geometry_msgs/Pose Geometric   e point the Pure Pursuit Tracking algorithm is planning towards ✓✓✓ 8

Robot State visualization_msgs/Marker Categorical   e user de   ned color of the robot to portray robot state ✓✓✓ 9
Camera Feed sensor_msgs/Image Raster   e camera feed from the robot displayed on the computer screen ✓✓✓ −

Distance Tool − Text Users obtain the distance between two selected points on the Map Grid ✓×× −
Coordinate Tool − Text Users obtain the coordinates of points selected on the Map Grid ✓×× −

Landmark Detected − Boolean True when a QR code is being detected, False otherwise −−− −
Waypoints Sent − Boolean A helper variable set by the participant in their code −−− −

Text (Terminal) − Text Debugging text data output in the Terminal using rospy.loginfo and ROS_INFO ✓✓✓ −
Text (Superimposed) visualization_msgs/Marker Text Debugging text data output in the users debugging tool environment ✓×✓ 10

Origin Axis − Vector   e x, y and z direction of the coordinate plane (see limitations section) ✓✓× 11
Map Grid − Vector A grid of 1m x 1m boxes (only the HoloLens has coordinate labels) ✓✓✓ 12

attached to it was used as a target object for the programming 
tasks (described in more detail below). Both rooms were 
controlled during the experiment (i.e., only the participant 
was in the room with no other distractions or people).

E. Participants & Procedure
We recruited a total of 27 participants (22 male, 4 female, 

and 1 prefer not to say), 16 from the University of Colorado 
Boulder and 11 from the Colorado School of Mines. This study 
was approved by our university IRB. Three of the participants’ 
data could not be used due to errors that occurred with their 
assigned debugging tool during their session, leading to our 
total analyzed dataset having 24 participants. The average age 
of the participants was 24.5 years old (SD = 3.50), with a 
range of 18–35. To qualify for our study, participants were 
required to have experience creating at least one robotics project 
containing one or more ROS package. Of the 24 users, seven 
(29.17%) reported working with ROS for three or more years. 
Nineteen (79.17%) of the participants reported having worked 
with a mobile robot in the past. On a five-point scale, users 
reported their average familiarity with RViz as 3.29 (SD = 
1.32), with a 2D GUI as 1.63 (SD = .86), and with AR as
2.00 (SD = 1.20). Their average experience using ROS was
1.96 years (SD = 1.08). We believe our sample of participants 
illustrate a broad distribution of roboticists with a wide range 
of experience levels compared to prior work. 

Each participant’s session consisted of five phases: (1) 
introduction, (2) training, (3) task one (detection), (4) task 
two (finder), (5) conclusion. (1) First, participants were given a 
consent form to read and sign, and then were brought into the 
task space. (2) Next, they were given their assigned debugging 
tool. If they were selected for the AR interface, they were 
quickly navigated through the HoloLens menu to calibrate 
their eyes for the device. They were then given 5 minutes

to read identical instruction sheets outlining the two tasks, 
the message types, variable names, functions, and launch files 
provided. Then, the participants were given a tutorial on how 
to navigate and use their assigned debugging tool, followed by 
a 15s video depicting the predefined visualizations participants 
had access to in their debugging tool. They were also shown 
a 10s example video showing the completion of task one, but 
were told they could accomplish the task however they saw 
fit. Finally, they were given time to ask clarifying questions. 
(3) Participants began the detection task, and finished once 
the robot reached within 0.6m of the QR code or when their
30 minute time limit elapsed. If the participants were unable 
to finish task one but were close to completion, the proctor 
guided the user’s code to a working product. This was done so 
the users could work with code they wrote and were familiar 
with going into the finder task. If the proctor deemed their 
code too far off from a working solution, they were given a 
working file. (4) Participants were then shown a 20s video 
of a visual representation of how the finder task could be 
accomplished. However, participants were told they could solve 
it however they saw fit. Participants then began the finder task 
and finished once the robot reached within 0.6m of the QR code 
or when 1 hour elapsed. (5) After the second task, a survey 
was administered to understand the participants experiences 
(see Appendix A). Following the survey, we collected open- 
ended verbal feedback regarding their assigned debugging tool. 
Finally, participants were debriefed and then compensated with 
a $40 gift card for their time.

F. Analysis Method
We analyzed the roboticists’ responses using thematic 

analysis, a qualitative research method used for identifying, 
organizing, and reporting themes and patterns within a data 
set [46]. This type of analysis is useful for examining the
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TABLE II: A summary of our themes and design guidelines 
to inform future visual debugging tools.

  eme

Sensemaking via 
Intuitive 

Visualizations

Visual Clutter

Sub-   emes

Understanding Context 
Understanding Robot Cognition 

Hypothesis Development 
Knowledge of Past and Future States 

Color 
Objects and Labels

Mitigate Occluding Visualizations 
Reducing Print Statements

Design Guidelines
A programmer’s sensemaking process 
can be aided by intuitive visualizations 
that properly encode data relevant to 

the current task.  For example, 
visualizations such as waypoints or 

spatially recognizable object locations 
were intuitive for a user’s understand- 
ing of navigational cues.   is provided 

users with a clearer connection 
between their code and the behavior of 

the robot, thereby improving their 
debugging process.

Minimizing visual clutter 
helps users identify and 

synthesize important 
information. An example of 

this would be to develop 
context-aware debugging 

tools that group visualizations 
by the task they inform, rather 

than all at once.

Cognitive Load

Visual Learning 
Superimposed Visualizations 

Perspective Taking 
Tool Learning Curves

Debugging interfaces should be 
designed to cohesively integrate 
information from disparate data 

streams to reduce a user’s 
cognitive load. In our study, AR 

users were frustrated by switching 
between the real environment and 

the computer terminal. 
Improvements might be to add a 
virtual terminal in situ within the 

AR environment or to   nd ways of 
embedding errors and warnings 

within AR.

User Interfaces

Simplicity vs Customization 
Interactive User Interfaces 

2D versus 3D Interfaces

More research is needed to 
understand how debugging 

aids may strike a balance 
between simplicity and useful 

features.

perspectives of participants and summarizing key features of 
a large data set. As described by Braun and Clarke, thematic 
analysis is done in six phases: (1) familiarizing yourself with 
the data, (2) generating initial codes, (3) searching for themes,
(4) reviewing potential themes, (5) defining and naming themes,
(6) producing the report [46]. From our analysis, we define 
four key design themes with 19 sub-themes (see §IV).

IV. D ESIGN T HEMES

Of the 24 participants, six (75%) using RViz, four (50%) 
using the 2D GUI and five (62.5%) using AR were able 
to complete task one. For task two, five (62.5%) of the 
participants in each condition successfully completed the task. 
At a high level, visual debugging tools can benefit a roboticist’s 
understanding of their code, while violations of HCI heuristics 
and VIS principles may reduce the effectiveness of such tools. 
The four major design themes synthesized from our qualitative 
data include Sensemaking via Intuitive Visualizations, Visual 
Clutter, Cognitive Load, and UI (Table II). Below, we discuss 
only the first three themes as the last theme involves lower-level 
aspects of specific interface implementation.

A. Sensemaking via Intuitive Visualizations
The principle of sensemaking is defined as “the process 

of searching for a representation and encoding data in that

representation to answer task-specific questions” [47]. Visual 
debugging tools can ameliorate sensemaking during debug- 
ging when there is a clear connection between the tool’s 
visualizations, its physical environment and a programmer’s 
code. Our analysis revealed six major aspects of how visual- 
izations affected sensemaking during debugging: contextual 
understanding, building models of robot cognition, hypothesis 
development regarding errors, knowledge of past and future 
states, color encodings, and object and label encodings.

1) Understanding Context: An important aspect of program- 
ming a robot is understanding its sensor reach and operational 
space. For example, research shows that visualizations that 
provide the location where sensors are collecting data help 
operators understand the context of their task, thereby improv- 
ing performance [7], [21]. Similarly, in our study, roboticists 
perceived that visual debugging tools helped them understand 
how the internal workings of the robot related to the real world:

P26[RViz]: “The visualizations of the paths and targets helped me 
connect the software tools to the real world when the real robot might 
have a different perception of the space than I believe.”

Other research has looked into providing visualizations of 
spatial regions to communicate sensed, inherent and user- 
defined spatial regions to users [4], [48], [49]. In our study, 
four (50%) of the RViz users and five (62.5%) of the AR 
users expressed a greater comprehension of the robot’s spatial 
environment when this data was displayed. For instance, the 
location of waypoints and the size of the environment helped 
participants develop and debug their code.

P6[RViz]: “I needed the size of the terrain to generate waypoints to 
explore. RViz gave me a sense of how large the environment was.” 
P24[AR]: “I believe [AR] can help programming robots, where spatial 
information is very important to contextualize what you are doing 
with your actual code instead of sitting there looking at numbers on
a console ...it can be easier to see what the robot is thinking rather
than what you think the robot is thinking ...”

Although one of the 2D GUI users expressed a liking 
towards their tool, others had more trouble understanding their 
environment. When asked what frustrated them the most about 
their debugging tool, they responded with:

P3[2D GUI]: “Mostly my lack of understanding of the relationship 
between the waypoints I was sending and the robot’s behavior - 
I started out assuming the robot would respond to the waypoint 
publishing in a particular way, and it took me a while to figure out 
that I had misunderstood. The GUI didn’t help in that regard.” 
P5[2D GUI]: “It would be nice to always know what the bounds of 
the robot are.”

2) Understanding Robot Cognition: One benefit to visual 
debugging tools is the user’s increased ability to understand and 
confirm a robot’s internal “thoughts”—how the robot is seeing 
and thinking about the world—which requires synthesizing 
information about robot hardware and software states. For 
instance, the following quote is representative of various
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incidents where visualizations helped users identify mismatches 
between robot cognition and the real world:

P12[AR]: “[AR] helped me find out that the robot odometry was not 
accurate and the robot needed to be restarted.”

Eleven (45.83%) of the total users noted this benefit 
particularly in debugging activities related to robot perception:

P16[RViz]: When asked what they liked about RViz: “Visualizing 
and seeing what the robot can see in order to help us make better 
decisions.” 
P5[2D GUI]: “[The 2D GUI] helped me see if the robot was 
recognizing objects/qr markers in the environment.” 
P25[2D GUI]: “It was great to see that the vision and SLAM system 
was actually working.” 
P10[AR]: “I was initially not sure what was happening because I 
didn’t write the planner, so when I saw that okay it is detecting [the 
QR code] and trying, going towards it, it helped me understand what 
it’s thinking.”

This feedback is particularly insightful as to the effect 
visualizations may have on robot development teams. While 
one part of the team may work on a robot’s autonomous stack, 
others may work on the user interface, both having limited 
knowledge of the others work. By providing robot program 
validation through informative visualizations, we may be able 
to promote cohesion and understanding across developers.

3) Hypothesis Development Regarding Errors: An important 
part of debugging is the ability to develop a hypothesis 
explaining why code is not working and where the bug may 
be. Ten (41.67%) of the participants noted their debugging tool 
helped them gain insights into their code:

P26[RViz]: “I could rule out steps between the real robot and 
the program—the robot might not be facing the target, and so the 
debugging tool would show the target in the space it perceives.” 
P13[2D GUI]: “It was nice to see where the robot was going with 
the code I had written so I could know better how to change my 
code.” 
P19[AR]: “[AR] helped me visualize/create a mental map and helped 
me see the gap between the code and where the robot went in reality.”

4) Knowledge of Past and Future States: An important 
part of the debugging process is the user’s ability to predict 
unwanted behavior, thereby understanding what to prevent 
from happening. Predictions of future behavior can be further 
informed by replaying a robot’s behavior from the past. During 
the development of task two, eight (33%) of the participants 
specifically asked for a feature that would allow them to 
visualize the robot traversing all of their programmed waypoints 
before execution, as well as a feature to review the robot 
behavior from the past.

P25[2D GUI]: “It would have been nice to have a standard video 
player where you could drag it, drag time, stop, play, reverse. Being
able to play through that rather than rosbag play...”

P27[2D GUI]: “I just wanted to show my waypoints on the GUI tool 
before executing the plan.” 
P9[AR]: “I’d use the holographic Turtlebot to display programmed 
behavior before executing the behavior on the real robot. Adding an 
option to speed up trajectory playback could also be helpful while 
debugging (2x, 4x etc).”

While replaying data is a feature commonly performed by a 
tool called rosbag, P25 sees a benefit to providing this feature 
through a GUI. Developers can do this using a package in ROS 
call rqt tools. However, only three (12.5%) of the participants 
reported using the plugins provided by rqt tools for debugging. 
As a result, it is worth investigating how to properly integrate 
this feature into commonly used debugging tools.

5) Color: The use of color to encode data can clarify 
or inhibit a user’s understanding of their task. For example, 
rainbow color maps hinder a user’s ability to perform perceptual 
ordering of colors and to see important details in the map [12], 
[29]. Certain color choices may also create accessibility issues 
for color blind users (to put this issue into perspective, nearly
1 in 12 males are colorblind [50]). While the effect of color 
maps were not specifically investigated in our study, in each of 
the debugging tools, the waypoint path, waypoint path history, 
laser scan, robot state and QR positions were all displayed 
using a color palette accessible to color blind users, a design 
feature we believe could improve the accessibility of existing 
tools such as RViz. However, we one user wanted to keep color 
consistent with what they were used to seeing (e.g. red for 
errors, yellow for warnings) and another was confused by the 
colors in general.

P17[2D GUI]: “That’s how ROS error messages are right? Errors 
are red in color, ROS warnings are yellow in color.” 
P21[2D GUI]: “I wasn’t 100% sure what the different colors were 
but I could make a good assumption.”

Based on this feedback, it may not be enough to provide 
color blind friendly visualizations unless all users can intuitively 
understand the information the colors are encoding. For 
example, keeping in line with the standards understood by 
P17, but also adhering to color blind accessible color palettes, 
one might use a reddish purple to signify paths a robot cannot 
reach, yellow to represent paths in progress and bluish green 
to display successful paths traversed [50]. Furthermore, while 
labeling colors may explain their meaning, a more intuitive 
approach could be to incorporate geometric shapes such as 
arrows to display direction or animations (e.g., blinking) to 
portray uncertainty [51], [52].

6) Objects and Labels: When visualizations were not 
labeled, such as the axis orientation or the grid size, five (62.5%) 
2D GUI users felt they were missing important information. 
In the RViz condition, due to a bug where the robot transform 
axis was displayed rather than the origin axis, two (25%) 
participants reported having difficulty understanding the axis 
orientation initially.

P20[RViz]: “I wish there was an X/Y axis so I could get my bearings
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better.” 
P11[2D GUI]: “I have a feeling it’s a part of the experiment but 
a more descriptive setup would have been nice to have (axis labels, 
grid step size, maybe even a real time pose readout would have been 
nice).” 
P17[2D GUI]: “Understanding the x and y axis of the robot. If this 
was provided in a legend, it would have been easier to code rather 
than to go with hit and trial to see what is what.”

In these cases, participants had difficulty understanding the 
direction of the x and y axis. Similarly, while each grid square 
was 1m ⇥ 1m, participants had difficulty inferring distances 
just by looking at the grid map. In the AR tool, the axis of 
orientation and grid were clearly labeled with axis directions 
and grid step sizes. This clarified the scene for users with one 
of the participants stating:

P4[AR]: “It gave me the coordinate system right away so I didn’t 
have to infer that from robot’s behavior.”

Research has found evidence supporting that icons need 
to be supported by text to promote user understanding of its 
functionality [53]. Similarly, a clearer representation of spatial 
indicators can be developed through labels that clearly convey 
what they mean to the user.

B. Visual Clutter
While visualizations can convey meaningful information 

to users, too many visual artifacts can quickly inhibit a 
user’s understanding of what is being displayed. This issue 
is commonly referred to as visual clutter or overdraw and 
can decrease information recognition, scene segmentation, 
and visual search performance [54]. Our results offer two 
suggestions:

1) Mitigate Occluding Visualizations: One RViz user had 
an issue of previous paths blocking their view of future ones.

P26[RViz]: “The previous paths are still visible, impeding my ability 
to see the current path.”

Similar issues with occluding or cluttered visualizations 
occurred when participants coded waypoints with step sizes 
smaller than the robot. Since waypoint locations were displayed 
on the floor of the scene, future waypoints were sometimes 
rendered beneath the robot’s digital twin. This prevented 
participants from visualizing the list of waypoints being 
traversed by the robot. In one case, this prevented a participant 
from realizing waypoint visualizations were a feature being 
displayed.

P14[RViz]: “I don’t know if it is possible, but I think it would be 
nice to show the next waypoint the Turtlebot is going to move to on 
RViz.”

For 2D interfaces, visual clutter is difficult to prevent. 
However, solutions from computer graphics could be applied 
where the salience of data can be manipulated to direct visual 
attention [55], [56]. For example, the path to the next waypoint

can be rendered opaque while the path history can be displayed 
using a greater level of transparency as time goes by [29]. 
Transparent digital twins of the robot can also be used so 
that it does not obstruct the view of waypoint visualizations. 
Since 3D visualization tools have the ability to re-position 
visualizations by traversing the z-axis, future and past paths 
can also be displayed at a height that won’t be covered by the 
robot.

2) Reducing Print Statements: Another form of visual clutter 
in programming can present itself as overload of output print 
statements in a terminal. Twenty (83.3%) of the participants 
reported using print statements as a form of debugging their 
code. While printing variables is an encouraged form of 
debugging that can be both quick and informative, multiple 
participants valued visualizing the data as opposed to printing 
it.

P18[RViz]: “It helped me not need to print as much to the terminal 
because I could see what the robot was thinking/doing.” 
P20[RViz]: “I needed less print statements which meant that the 
terminal filled up slower.” 
P5[2D GUI]: “[The visualizations] allowed me to rule out particular 
possibilities as to why the robot was not moving. I believe that this 
was faster than it would have been if I had to print out particular 
data points to locate the reason for my error.”

In particular, while P20 still used print statements, the 
participant benefited from seeing the printed output of only 
the most relevant information in a less cluttered terminal.

C. Cognitive Load
Cognitive load is defined as a “multidimensional construct 

representing the load that performing a particular task imposes 
on the learner’s cognitive system” [57]. Naturally, the process 
of debugging can involve a high cognitive load varying based 
on the user’s experience level [58]. We found three primary 
ways visualizations may reduce the mental load and effort that 
it takes to understand and fix issues in code.

1) Visual Learning: We found that visualization tools may 
be particularly useful for programmers who identify themselves 
as visual learners. By seeing data in the context it is meant 
to portray, eight (33.3%) of the participants commented they 
had an easier time understanding the program without looking 
directly at the code.

P26[RViz]: “I am a visual learner, and so the visualizations of path 
and targets helped me to connect the software tools to the real world.” 
P11[2D GUI]: “I’m a visual learner so this tool definitely made my 
thought process easier to work through.” 
P10[AR]: “It helped me understand if my code was working without 
looking through the code.”

2) Superimposed Visualizations: A key feature of our AR 
system is its ability to overlay visualizations in situ in the user’s 
real environment. Four (50%) of the AR users specifically noted 
the superimposed visualizations reduced their perceived mental 
effort when trying to understand spatial relationships.
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P9[AR]: “The superimposed graphics made understanding robot 
behavior and its operational space very easy.” 
P12[AR]: “The biggest aspect I liked was when you could see where 
the grid lined up with the robot which is something you don’t get 
with traditional RViz when visualizing the grid.”

3) Perspective-Taking: Perspective-taking involves a user’s 
ability to understand a robot’s behavior within the context 
of the robot’s environment to achieve situational awareness, 
thereby improving performance on certain tasks [59], [60]. AR 
has improved perspective-taking during teleoperation tasks [7], 
and the same may hold true for debugging. Two (25%) of the 
AR users commented on frustrations with switching between 
the HoloLens and the computer while debugging their code.

P9[AR]: “Debugging with the HoloLens wasn’t as seamless because 
I had to keep turning around if I needed to get any information from 
the scene. E.g.,: I turned around to view the scene after running my 
code for the first task, waiting for the robot to do something, but I 
didn’t realize my code had thrown a syntax error which was displayed 
in the terminal.” 
P10[AR]: When asked what about the tool frustrated them: “Switching 
between the HoloLens and back [to the computer].”

Future AR systems may address these issues by embedding a 
programming console as an AR window to remove any reliance 
on the computer terminal. Other areas of research might look 
into naturally embedding errors and warnings within AR. From 
another perspective, one experienced RViz user commented 
that the most difficult aspects of RViz is moving the camera 
around to get different views of the scene. This prevents the 
user from viewing the robot from a visually intuitive position, 
thereby increasing the chance of errors in perspective-taking.

P6[RViz]: “One thing I don’t like about [RViz], is if you are moving 
in a large area, you have to reset the camera and that is always a 
pain. It never seems to reset it correctly. It is unnecessarily difficult.”

V. TAKEAWAYS AND O PPORTUNITIES

In this research, we studied how 24 roboticists used one of 
three different visualization tools to assist during their coding 
and debugging process. From our analysis, we identified three 
design guidelines in regards to visual debugging tools. First, a 
programmer’s sensemaking process can be aided by intuitive 
visualizations that properly encode data. Second, by minimizing 
visual clutter, users have an easier time identifying and syn- 
thesizing important information. Lastly, debugging interfaces 
should be designed to cohesively integrate information from 
disparate data streams to reduce cognitive load. One example 
of how to apply our findings is to develop context-aware 
debugging tools that group visualizations by the task they 
inform, rather than providing all the information at once. Such 
a design would allow the user to rotate between visualization 
groupings that provide only the information relevant to the 
category they effect. For instance, engineers debugging self- 
driving cars may need feedback on the autonomous decision 
making process, such as why a car has stopped. Thus, an

interface might group feedback from the perception system, 
highlighting important information within immediate proximity 
of the car such as detected stop lights, incoming cars and 
pedestrians. This will result in reducing the salience of 
irrelevant data.

A. Limitations
While our study provided us with several new insights 

for visual debugging systems, we note that our approach is 
not without limitations. For example, the tasks in our study, 
which replicated the robot tasks in [18], principally involved 
localization and navigation. We believe these are representative 
of tasks many roboticists encounter at some point in their 
career, but note there are many other important robot tasks (e.g., 
manipulation) that future work may examine from a debugging 
perspective. We also keep in mind that our choice of robot 
platform may have introduced certain biases regarding the 
data and visualizations that our participants found helpful (e.g., 
differences might be found with legged platforms). Additionally, 
we restricted participants to a 2 hour task time, an artificial 
limitation compared with general robotics development and 
debugging. Future work might perform longitudinal studies 
to examine how tools may support debugging across greater 
timescales. While we strove to recruit a diverse set of users, 
we ultimately had a majority male sample, reflective of the 
current robotics population (e.g., see [61] where only 23 
roboticists out of 444 individuals were female). Within our 
sample, user experience levels with their assigned debugging 
tool varied. Differences in participant experience potentially 
affected their performance and subjective feedback, although 
such an imbalance is unavoidable given that RViz is the default 
visualization tool for ROS. After conducting our study, we 
found an error in our RViz condition where we displayed the 
robot transform axis rather than the scene origin axis shown 
in the other two conditions. This affected user feedback as 
described in §IV-A6. Finally, since our thematic analysis was 
based solely on subjective feedback from participants, future 
work could obtain quantitative data to further back up the 
application of our design guidelines.

B. Conclusion
By understanding how design aspects improve user expe- 

riences, we have an opportunity to improve the debugging 
capabilities of expert roboticists, while also reducing the 
barrier to entry for new ones. While this may seem obvious— 
after all, the HRI community commonly takes a user-centered 
design approach when developing systems for end-users—we 
believe it is critical that we start applying these same ideas 
when developing our own tools. Our hope is that this initial 
exploration will provide a starting point for future research into 
the advancement of effective visual development and debugging 
tools for roboticists.
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