
Advancing the Design of Visual Debugging Tools
for Roboticists

Bryce Ikeda
Department of Computer Science
University of Colorado Boulder

Boulder, Colorado
bryce.ikeda@colorado.edu

Daniel Szafir
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, North Carolina

daniel.szafir@cs.unc.edu

(a) RViz (b) 2D GUI (c) AR

Fig. 1: In this paper, we explore how three different visual tools may aid robotics debugging. Shown above are identical
snapshots in time during a robot object detection task. Each tool varies in their display of the robot’s sensor and state information,
annotated with yellow numbers that are described in Table I.

Abstract—Programming robots is a challenging task exacer-
bated by software bugs, faulty hardware, and environmental fac-
tors. When coding issues arise, traditional debugging techniques
such as output logs or print statements that may help in typical
computer applications are not always useful for roboticists. As a
result, roboticists often leverage visualizations that depict various
aspects of robot, sensor, and environment states. In this paper, we
explore various design approaches towards such visualizations for
robotics debugging support, including 3D visualizations presented
on 2D displays, as in the popular RViz tool within the ROS
ecosystem, visualizations in a two-dimensional graphical user
interfaces (2D GUI), and emerging immersive three-dimensional
(3D) augmented reality (AR). We present a qualitative evaluation
of feedback gathered from 24 roboticists across two universities
who used one of these debugging tools and synthesize design
guidelines for advancing robotics debugging interfaces.

Index Terms—Augmented Reality (AR); Mixed Reality (MR);
visualization; interface design; robots; debugging; HRI; HCI

I. I NTRODUCTION

Programming robots is difficult. In addition to standard
challenges faced by any computer programmer, such as
syntax, logic, compilation, or runtime errors, roboticists must
also deal with complications caused by system variability
from environmental factors and unreliable hardware. Typical
debugging techniques, such as printing raw data to the console
or log files, can be tedious and often confusing as robots
may contain a variety of motors and sensors with a range of

complex data types. To address this issue, roboticists often
make use of visualizations of robot state data. For example,
end effector transformations can be difficult to interpret and
validate via logs of matrix data, but when inspected through
3D visualizations, can be easily confirmed.

While there has been significant research in the human-robot
interaction (HRI) community that explores visualizations of
robot state and for end-users [1]–[7], to date there has been
limited work specifically focusing on visualization design for
roboticists. This paper seeks to address this gap by treating
roboticists themselves as the “human” component of human-
robot interaction and investigating how different modalities
and presentations of robot data may support robot debugging.

One of the most widely used tools for robotics programming
across both academic research and industry settings is the
Robot Operating System (ROS). RViz, a central component of
the ROS ecosystem, enables roboticists to visualize 3D data
on a 2D monitor [8]. Examples of these visualizations include
point clouds, object affordances, and robot models [9]–[11].
While commonly used, little work has been done to evaluate
the design choices of this tool. For example, RViz contains
a clear design flaw in its use of rainbow color schemes for
data encoding [12], [13]. Aside from RViz, other roboticists
leverage 2D visualizations. For example, Zaman et al. [14]
and Aini et al. [15] observed their mobile robots from a top

Session: Robot Learning and Programming HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

195978-1-6654-0731-1/22/$31.00 ©2022 IEEE

down view to visualize environment mapping, location, and
sensor data. While 2D GUIs are prevalent in literature, we have
found limited work focusing on their design for development
and debugging or enabling reasoning over potential design
trade-offs between RViz and 2D GUI approaches.

In addition to RViz and 2D GUIs, 3D immersive AR
visualizations are emerging as a third modality for visualizing
robot data for end-users [1], [2], [5]–[7], [16], [17]. To date,
there have been no detailed explorations investigating the use
of AR visualizations for robotics debugging. However, prior
work by Collett and MacDonald found benefits to using 2D AR
annotations in their ARDev system for robot debugging [18].
While promising, ARDev could only provide 2D visualizations
displayed on a TV screen (i.e., 2D AR overlays [19]), which
lack stereo depth cues, has a fixed field-of-view, and require
that users translate their perspective into a different context
(a top-down view). Such setups separate data from its context
and can reduce a user’s performance on tasks related to
spatial understanding and robot control [7], [20], [21]. Modern
AR head-mounted displays (ARHMDs) can eliminate these
issues by projecting visualizations directly within a single,
unified context in the user’s real environment. Thus we believe
ARHMDs hold great potential for robotics debugging.

Contributions: In this work, we conceptually replicated [18]
to investigate robotics debugging. We performed a qualitative
evaluation, inspired by the design study methodology of [22],
to compare debugging between RViz, a 2D GUI, and AR with
24 roboticists. Our novel contributions include: (1) exploring
AR with a modern ARHMD (vs 2D AR annotations on a
top-down screen as in [18]), (2) investigating debugging in
the context of modern robotics programming with ROS ([18]
did not use ROS), (3) comparing AR to an industry-standard
tool RViz (vs [18] which only compared fixed screen AR to
a 2D GUI), and (4) collecting data from substantially more
roboticists (24 in our study vs 5 in [18]) with more experience
(29% of our users had � 3 years vs in [18] all had  3 years).
Finally, we present a thematic analysis of our findings and
offer design guidelines for developing future systems aimed at
advancing robotics by supporting roboticists themselves.

II. R ELATED W ORK

In this section, we discuss prior work related to debugging,
human-robot interfaces, and augmented reality.

A. Debugging Code
Debugging in its most basic terms is defined as “the attempt

to pinpoint and fix the source of an error” [23]. To better
understand this process, Lawrence et al. applied the information
foraging theory, that models the programmer as a predator
following information scents while navigating through their
code topology to find their prey: the bug in their code [24].
In practice, debugging is a complex process influenced by a
user’s experience level and the tools they have at their disposal.
Various techniques have been developed to aid with this process,
such as program slicing, answering reachability questions, and
answering why lines [25]–[27]. However, these approaches

are difficult to implement on distributed systems, such as
robots, where two executions of the same program may provide
different results due to communication delays, hardware errors,
or environmental instability. Other researchers have also used
time-coded example data and a timeline interface to program
and debug code visually [28]. Still, these interfaces require that
the user gather large amounts of high quality video data, and
inhibits the generalization of their program to varying tasks.
Our research explores how visual debugging tools may fill
these gaps by providing real-time debugging information to
help roboticists quickly pinpoint and fix errors.

B. Human-Robot Interfaces & Augmented Reality
To date, most HRI interface research has focused on

supporting end-users with non-programming tasks such as
enhancing situational awareness or system usability (see [29]
for a survey and relevant links to data visualization). Within
this space, researchers are increasingly leveraging AR as a
tool to improve user interactions with robots ([30] & [31]
provide surveys). Prior to the introduction of modern ARHMDs,
researchers developed applications that overlaid data on 2D
screens to better communicate the state of mobile robots,
manipulators, and robotic swarms [3], [18], [32], [33]. Such
2D annotations have shown promise, but are limited by a
lack of stereopsis as a depth cue and fixed display windows.
It also forces users to shift perspectives between their real-
world view and a screen. More recent work has investigated
the use of ARHMDs to reduce or eliminate these issues for
end-users, finding that immersive AR can produce benefits for
robot control [5], [17], [34], [35] and robot learning [16], [36].
While this research exhibits how AR may aid end-users with
understanding system behaviors, they do not focus on users
who are fixing their robot code.

Other work has explored AR systems with the intention
of robotics education. For example, researchers have studied
how AR tablets may assist K–12 students in understanding
robots [37]–[39]. While this helps provide insight into how
to educate new roboticists, our focus is roboticists that are
already experienced developers. Similar to the AR debugging
system we develop in this work, Muhammad et al. and Cleaver
et al. created an AR framework for visualizing sensor data
obtained from a robot [39], [40]. While robot debugging is
identified as a potential application for their system, their
work focuses primarily on communicating robot motion intent
and improving robotics education [39], [40]. The only prior
research we can identify that is directly aligned with our goals
is Collett and MacDonald’s work on ARDev [18], as described
earlier. We extend [18] by investigating modern immersive AR,
using current robotics programming (i.e., ROS) contexts, and
including comparisons to industry-standard tools (i.e., RViz),
while drawing on interface design principles from Human-
Computer Interaction (HCI) [41], [42] and principles from
Visualization (VIS). One such principle includes sensemaking—
the process of how humans work with information [43]—to
explore how we may further improve debugging tools for
roboticists and advance progress in the field overall.

Session: Robot Learning and Programming HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

196

III. C OMPARING V ISUAL ROBOTICS D EBUGGING TOOLS

In this work, we compared existing and emerging visualiza-
tion tools that support robotics debugging. We ran a qualitative
expert evaluation with 24 roboticists across two universities.
Below, we provide study and implementation details.

A. Study Design
Our study was a 3 ⇥ 1, between-participants design where

each participant used one of three visualization aids (RViz, 2D
GUI, or AR) when programming a robot to complete two tasks.
Our overall approach was akin to that of a Design Study [22]
to gain expert feedback on each visual debugging tool.

B. Programming Tasks
Our study presented roboticists with two programming

problems, both of which were modified versions of tasks
initially proposed by Collett and MacDonald as representative
of standard applications robot developers typically code: a
detection task and a finder task [18]. Participants completed
these tasks in the context of programming and debugging
a TurtleBot 2, a low-cost, differential drive mobile robot
commonly used as an entry machine by roboticists.

For the detection task, participants were given 30 minutes
to program a TurtleBot to detect a QR code 1.5m in front of
the robot’s camera, drive up to it, and stop within 0.6m of the
QR code. For the finder task, participants were given 1 hour
to program a TurtleBot to search a room for a QR code placed
in an unknown location, drive up to it, and stop within 0.6m
of the QR code. These tasks required object detection and
navigation thus requiring the programmer to take advantage
of multiple forms of data and control sequences. We provided
participants with a pre-configured ROS directory containing
an autonomous robot framework that included files for EKF-
SLAM for localization, A* for path planning, Pure Pursuit for
path following, and OpenCV to track QR codes. Participants
coded within this directory using either Python or C++.

C. Robot Debugging Data Visualization Tools
As participants completed their programming tasks, they

inevitably made errors that needed to be debugged. Participants
were provided one of three different visual debugging tools that
highlight various approaches for how interfaces might display
robot data. This enables a comparison of a breadth of design
factors such as 2D (2D GUI) vs 3D (RViz) vs immersive 3D
(AR) and separate visualization context (RViz and 2D GUI)
vs integrated context (AR).

• RViz is a commonly-used 3D visualization tool for
robotics. It can display a robot model, environment maps,
and sensor data via a graphical user interface on a monitor
(Figure 1a). To interface with RViz, participants used their
mouse left, right, and middle clicker to move the virtual
camera and edit the visualizations in the environment.

• We created a 2D GUI as a replication of Collett and
MacDonald’s 2D GUI from Player/Stage [18]. It displays
similar visualizations as RViz and the immersive AR tools,
but from a top-down perspective (Figure 1b). To interact

with this tool, the w, a, s and d keys enabled traversal in
the vertical and horizontal directions while the keys i and
o enabled zooming in/out.

• We developed an immersive AR debugging interface
that leverages the HoloLens ARHMD to project in situ
visualizations within the wearer’s workspace (Figure 1c).
The HoloLens was untethered from the development
computer, allowing users to freely move through the
environment and see visualizations from any angle. It also
displayed coordinates and measured distances when the
user interacted with the map grid through the HoloLen’s
air-tap feature. This was an added feature recommended by
Collett and MacDonald’s work and was not implemented
as a feature on the RViz or the 2D GUI because roboticists
do not typically use these tools on these applications.
Our AR design also addresses technological limitations of
Collett and MacDonald’s work (i.e., using 2D AR overlays
on separate screens vs an ARHMD). We used ROS# [44]
to send the data from ROS to our AR application.

All three interfaces provide a different medium for visually
representing data (2D, 3D on a 2D screen, and immersive
3D). To reason over how robot data might be effectively
translated to its visual representation at the interface level,
Collett and MacDonald identified four principle data types:
geometric data with an intrinsic visual representation using
points, lines and shapes (e.g., a robot model to represent
position); vector data with a magnitude and an orientation
(e.g., a planned path between two points); scalar data with
only a magnitude (e.g., a robot’s speed or mass); and abstract
data without an intrinsic visual representation (e.g., a robot’s
state) [18]. We extend this framework by splitting abstract
into four categories: text data expressed verbally (e.g., grid
coordinates); raster data with a grid of scalar values that
can include multiple information bands (e.g., an occupancy
grid); categorical data with distinct attributes that belong to a
specific concept (e.g., a robot’s state); and boolean data that is
true/false, yes/no, or 0/1 (e.g., the result of a conditional). These
primitive abstractions (i.e., “data types”) can inform a designer’s
choice of visual encodings when referencing established
visualization principles. For example, categorical information
can be readily encoded using color, specifically by multiple
hues [45]. As robot data may be visualized in a multitude of
ways, determining the high level data types may aid developers
with identifying corresponding visualization techniques that
most clearly communicate important information to the users.
See Table I for a complete list of rendered data types in each
visual debugging tool.

D. Environment
Two locations were used, one robotics laboratory at the

University of Colorado at Boulder and the other at Colorado
School of Mines. These locations were chosen to simulate
environments participants typically code and debug robots in.
Both rooms measured approximately 5m ⇥ 5m ⇥ 3m, each
containing one workstation for the programmers to code on.
A 0.3m ⇥ 0.3m ⇥ 0.9m box with a 0.18m ⇥ 0.18m QR code

Session: Robot Learning and Programming HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

197

TABLE I: The robot sensor and state data provided to the participant, its associated ROS message type, data type, visualization
description and the debugging tool it was displayed in. The legend corresponds to its respective value in Figure 1.

Data Message Type Data Type Description of Visualization AR2D GUIRViz Fig. 1 Legend

Occupancy Grid nav_msgs/OccupancyGrid Raster Obstacles in the environment via the Occupancy Grid mapping algorithm ✓✓✓ 2
Position nav_msgs/Odometry Geometric e position and orientation of the Turtlebot ✓✓✓ 3

Waypoint Path nav_msgs/Path Vector e planned path using A* on the user’s input waypoints ✓✓✓ 4

Laser Scan sensor_msgs/LaserScan Vector LIDAR data from the ASUS XTION ✓✓✓ 1

Waypoint Path History nav_msgs/Path Vector e previously traversed path of the robot ✓✓✓ 5
Raw QR Position perception/Landmarks Geometric e detected position of a QR code using OpenCV ✓✓✓ 6

Estimated QR Position perception/Landmarks Geometric e estimated position of the QR codes via EKF SLAM ✓✓✓ 7
Look Ahead Point geometry_msgs/Pose Geometric e point the Pure Pursuit Tracking algorithm is planning towards ✓✓✓ 8

Robot State visualization_msgs/Marker Categorical e user de ned color of the robot to portray robot state ✓✓✓ 9
Camera Feed sensor_msgs/Image Raster e camera feed from the robot displayed on the computer screen ✓✓✓ −

Distance Tool − Text Users obtain the distance between two selected points on the Map Grid ✓×× −
Coordinate Tool − Text Users obtain the coordinates of points selected on the Map Grid ✓×× −

Landmark Detected − Boolean True when a QR code is being detected, False otherwise −−− −
Waypoints Sent − Boolean A helper variable set by the participant in their code −−− −

Text (Terminal) − Text Debugging text data output in the Terminal using rospy.loginfo and ROS_INFO ✓✓✓ −
Text (Superimposed) visualization_msgs/Marker Text Debugging text data output in the users debugging tool environment ✓×✓ 10

Origin Axis − Vector e x, y and z direction of the coordinate plane (see limitations section) ✓✓× 11
Map Grid − Vector A grid of 1m x 1m boxes (only the HoloLens has coordinate labels) ✓✓✓ 12

attached to it was used as a target object for the programming
tasks (described in more detail below). Both rooms were
controlled during the experiment (i.e., only the participant
was in the room with no other distractions or people).

E. Participants & Procedure
We recruited a total of 27 participants (22 male, 4 female,

and 1 prefer not to say), 16 from the University of Colorado
Boulder and 11 from the Colorado School of Mines. This study
was approved by our university IRB. Three of the participants’
data could not be used due to errors that occurred with their
assigned debugging tool during their session, leading to our
total analyzed dataset having 24 participants. The average age
of the participants was 24.5 years old (SD = 3.50), with a
range of 18–35. To qualify for our study, participants were
required to have experience creating at least one robotics project
containing one or more ROS package. Of the 24 users, seven
(29.17%) reported working with ROS for three or more years.
Nineteen (79.17%) of the participants reported having worked
with a mobile robot in the past. On a five-point scale, users
reported their average familiarity with RViz as 3.29 (SD =
1.32), with a 2D GUI as 1.63 (SD = .86), and with AR as
2.00 (SD = 1.20). Their average experience using ROS was
1.96 years (SD = 1.08). We believe our sample of participants
illustrate a broad distribution of roboticists with a wide range
of experience levels compared to prior work.

Each participant’s session consisted of five phases: (1)
introduction, (2) training, (3) task one (detection), (4) task
two (finder), (5) conclusion. (1) First, participants were given a
consent form to read and sign, and then were brought into the
task space. (2) Next, they were given their assigned debugging
tool. If they were selected for the AR interface, they were
quickly navigated through the HoloLens menu to calibrate
their eyes for the device. They were then given 5 minutes

to read identical instruction sheets outlining the two tasks,
the message types, variable names, functions, and launch files
provided. Then, the participants were given a tutorial on how
to navigate and use their assigned debugging tool, followed by
a 15s video depicting the predefined visualizations participants
had access to in their debugging tool. They were also shown
a 10s example video showing the completion of task one, but
were told they could accomplish the task however they saw
fit. Finally, they were given time to ask clarifying questions.
(3) Participants began the detection task, and finished once
the robot reached within 0.6m of the QR code or when their
30 minute time limit elapsed. If the participants were unable
to finish task one but were close to completion, the proctor
guided the user’s code to a working product. This was done so
the users could work with code they wrote and were familiar
with going into the finder task. If the proctor deemed their
code too far off from a working solution, they were given a
working file. (4) Participants were then shown a 20s video
of a visual representation of how the finder task could be
accomplished. However, participants were told they could solve
it however they saw fit. Participants then began the finder task
and finished once the robot reached within 0.6m of the QR code
or when 1 hour elapsed. (5) After the second task, a survey
was administered to understand the participants experiences
(see Appendix A). Following the survey, we collected open-
ended verbal feedback regarding their assigned debugging tool.
Finally, participants were debriefed and then compensated with
a $40 gift card for their time.

F. Analysis Method
We analyzed the roboticists’ responses using thematic

analysis, a qualitative research method used for identifying,
organizing, and reporting themes and patterns within a data
set [46]. This type of analysis is useful for examining the

Session: Robot Learning and Programming HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

198

TABLE II: A summary of our themes and design guidelines
to inform future visual debugging tools.

 eme

Sensemaking via
Intuitive

Visualizations

Visual Clutter

Sub- emes

Understanding Context
Understanding Robot Cognition

Hypothesis Development
Knowledge of Past and Future States

Color
Objects and Labels

Mitigate Occluding Visualizations
Reducing Print Statements

Design Guidelines
A programmer’s sensemaking process
can be aided by intuitive visualizations
that properly encode data relevant to

the current task. For example,
visualizations such as waypoints or

spatially recognizable object locations
were intuitive for a user’s understand-
ing of navigational cues. is provided

users with a clearer connection
between their code and the behavior of

the robot, thereby improving their
debugging process.

Minimizing visual clutter
helps users identify and

synthesize important
information. An example of

this would be to develop
context-aware debugging

tools that group visualizations
by the task they inform, rather

than all at once.

Cognitive Load

Visual Learning
Superimposed Visualizations

Perspective Taking
Tool Learning Curves

Debugging interfaces should be
designed to cohesively integrate
information from disparate data

streams to reduce a user’s
cognitive load. In our study, AR

users were frustrated by switching
between the real environment and

the computer terminal.
Improvements might be to add a
virtual terminal in situ within the

AR environment or to nd ways of
embedding errors and warnings

within AR.

User Interfaces

Simplicity vs Customization
Interactive User Interfaces

2D versus 3D Interfaces

More research is needed to
understand how debugging

aids may strike a balance
between simplicity and useful

features.

perspectives of participants and summarizing key features of
a large data set. As described by Braun and Clarke, thematic
analysis is done in six phases: (1) familiarizing yourself with
the data, (2) generating initial codes, (3) searching for themes,
(4) reviewing potential themes, (5) defining and naming themes,
(6) producing the report [46]. From our analysis, we define
four key design themes with 19 sub-themes (see §IV).

IV. D ESIGN T HEMES

Of the 24 participants, six (75%) using RViz, four (50%)
using the 2D GUI and five (62.5%) using AR were able
to complete task one. For task two, five (62.5%) of the
participants in each condition successfully completed the task.
At a high level, visual debugging tools can benefit a roboticist’s
understanding of their code, while violations of HCI heuristics
and VIS principles may reduce the effectiveness of such tools.
The four major design themes synthesized from our qualitative
data include Sensemaking via Intuitive Visualizations, Visual
Clutter, Cognitive Load, and UI (Table II). Below, we discuss
only the first three themes as the last theme involves lower-level
aspects of specific interface implementation.

A. Sensemaking via Intuitive Visualizations
The principle of sensemaking is defined as “the process

of searching for a representation and encoding data in that

representation to answer task-specific questions” [47]. Visual
debugging tools can ameliorate sensemaking during debug-
ging when there is a clear connection between the tool’s
visualizations, its physical environment and a programmer’s
code. Our analysis revealed six major aspects of how visual-
izations affected sensemaking during debugging: contextual
understanding, building models of robot cognition, hypothesis
development regarding errors, knowledge of past and future
states, color encodings, and object and label encodings.

1) Understanding Context: An important aspect of program-
ming a robot is understanding its sensor reach and operational
space. For example, research shows that visualizations that
provide the location where sensors are collecting data help
operators understand the context of their task, thereby improv-
ing performance [7], [21]. Similarly, in our study, roboticists
perceived that visual debugging tools helped them understand
how the internal workings of the robot related to the real world:

P26[RViz]: “The visualizations of the paths and targets helped me
connect the software tools to the real world when the real robot might
have a different perception of the space than I believe.”

Other research has looked into providing visualizations of
spatial regions to communicate sensed, inherent and user-
defined spatial regions to users [4], [48], [49]. In our study,
four (50%) of the RViz users and five (62.5%) of the AR
users expressed a greater comprehension of the robot’s spatial
environment when this data was displayed. For instance, the
location of waypoints and the size of the environment helped
participants develop and debug their code.

P6[RViz]: “I needed the size of the terrain to generate waypoints to
explore. RViz gave me a sense of how large the environment was.”
P24[AR]: “I believe [AR] can help programming robots, where spatial
information is very important to contextualize what you are doing
with your actual code instead of sitting there looking at numbers on
a console ...it can be easier to see what the robot is thinking rather
than what you think the robot is thinking ...”

Although one of the 2D GUI users expressed a liking
towards their tool, others had more trouble understanding their
environment. When asked what frustrated them the most about
their debugging tool, they responded with:

P3[2D GUI]: “Mostly my lack of understanding of the relationship
between the waypoints I was sending and the robot’s behavior -
I started out assuming the robot would respond to the waypoint
publishing in a particular way, and it took me a while to figure out
that I had misunderstood. The GUI didn’t help in that regard.”
P5[2D GUI]: “It would be nice to always know what the bounds of
the robot are.”

2) Understanding Robot Cognition: One benefit to visual
debugging tools is the user’s increased ability to understand and
confirm a robot’s internal “thoughts”—how the robot is seeing
and thinking about the world—which requires synthesizing
information about robot hardware and software states. For
instance, the following quote is representative of various

Session: Robot Learning and Programming HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

199

incidents where visualizations helped users identify mismatches
between robot cognition and the real world:

P12[AR]: “[AR] helped me find out that the robot odometry was not
accurate and the robot needed to be restarted.”

Eleven (45.83%) of the total users noted this benefit
particularly in debugging activities related to robot perception:

P16[RViz]: When asked what they liked about RViz: “Visualizing
and seeing what the robot can see in order to help us make better
decisions.”
P5[2D GUI]: “[The 2D GUI] helped me see if the robot was
recognizing objects/qr markers in the environment.”
P25[2D GUI]: “It was great to see that the vision and SLAM system
was actually working.”
P10[AR]: “I was initially not sure what was happening because I
didn’t write the planner, so when I saw that okay it is detecting [the
QR code] and trying, going towards it, it helped me understand what
it’s thinking.”

This feedback is particularly insightful as to the effect
visualizations may have on robot development teams. While
one part of the team may work on a robot’s autonomous stack,
others may work on the user interface, both having limited
knowledge of the others work. By providing robot program
validation through informative visualizations, we may be able
to promote cohesion and understanding across developers.

3) Hypothesis Development Regarding Errors: An important
part of debugging is the ability to develop a hypothesis
explaining why code is not working and where the bug may
be. Ten (41.67%) of the participants noted their debugging tool
helped them gain insights into their code:

P26[RViz]: “I could rule out steps between the real robot and
the program—the robot might not be facing the target, and so the
debugging tool would show the target in the space it perceives.”
P13[2D GUI]: “It was nice to see where the robot was going with
the code I had written so I could know better how to change my
code.”
P19[AR]: “[AR] helped me visualize/create a mental map and helped
me see the gap between the code and where the robot went in reality.”

4) Knowledge of Past and Future States: An important
part of the debugging process is the user’s ability to predict
unwanted behavior, thereby understanding what to prevent
from happening. Predictions of future behavior can be further
informed by replaying a robot’s behavior from the past. During
the development of task two, eight (33%) of the participants
specifically asked for a feature that would allow them to
visualize the robot traversing all of their programmed waypoints
before execution, as well as a feature to review the robot
behavior from the past.

P25[2D GUI]: “It would have been nice to have a standard video
player where you could drag it, drag time, stop, play, reverse. Being
able to play through that rather than rosbag play...”

P27[2D GUI]: “I just wanted to show my waypoints on the GUI tool
before executing the plan.”
P9[AR]: “I’d use the holographic Turtlebot to display programmed
behavior before executing the behavior on the real robot. Adding an
option to speed up trajectory playback could also be helpful while
debugging (2x, 4x etc).”

While replaying data is a feature commonly performed by a
tool called rosbag, P25 sees a benefit to providing this feature
through a GUI. Developers can do this using a package in ROS
call rqt tools. However, only three (12.5%) of the participants
reported using the plugins provided by rqt tools for debugging.
As a result, it is worth investigating how to properly integrate
this feature into commonly used debugging tools.

5) Color: The use of color to encode data can clarify
or inhibit a user’s understanding of their task. For example,
rainbow color maps hinder a user’s ability to perform perceptual
ordering of colors and to see important details in the map [12],
[29]. Certain color choices may also create accessibility issues
for color blind users (to put this issue into perspective, nearly
1 in 12 males are colorblind [50]). While the effect of color
maps were not specifically investigated in our study, in each of
the debugging tools, the waypoint path, waypoint path history,
laser scan, robot state and QR positions were all displayed
using a color palette accessible to color blind users, a design
feature we believe could improve the accessibility of existing
tools such as RViz. However, we one user wanted to keep color
consistent with what they were used to seeing (e.g. red for
errors, yellow for warnings) and another was confused by the
colors in general.

P17[2D GUI]: “That’s how ROS error messages are right? Errors
are red in color, ROS warnings are yellow in color.”
P21[2D GUI]: “I wasn’t 100% sure what the different colors were
but I could make a good assumption.”

Based on this feedback, it may not be enough to provide
color blind friendly visualizations unless all users can intuitively
understand the information the colors are encoding. For
example, keeping in line with the standards understood by
P17, but also adhering to color blind accessible color palettes,
one might use a reddish purple to signify paths a robot cannot
reach, yellow to represent paths in progress and bluish green
to display successful paths traversed [50]. Furthermore, while
labeling colors may explain their meaning, a more intuitive
approach could be to incorporate geometric shapes such as
arrows to display direction or animations (e.g., blinking) to
portray uncertainty [51], [52].

6) Objects and Labels: When visualizations were not
labeled, such as the axis orientation or the grid size, five (62.5%)
2D GUI users felt they were missing important information.
In the RViz condition, due to a bug where the robot transform
axis was displayed rather than the origin axis, two (25%)
participants reported having difficulty understanding the axis
orientation initially.

P20[RViz]: “I wish there was an X/Y axis so I could get my bearings

Session: Robot Learning and Programming HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

200

better.”
P11[2D GUI]: “I have a feeling it’s a part of the experiment but
a more descriptive setup would have been nice to have (axis labels,
grid step size, maybe even a real time pose readout would have been
nice).”
P17[2D GUI]: “Understanding the x and y axis of the robot. If this
was provided in a legend, it would have been easier to code rather
than to go with hit and trial to see what is what.”

In these cases, participants had difficulty understanding the
direction of the x and y axis. Similarly, while each grid square
was 1m ⇥ 1m, participants had difficulty inferring distances
just by looking at the grid map. In the AR tool, the axis of
orientation and grid were clearly labeled with axis directions
and grid step sizes. This clarified the scene for users with one
of the participants stating:

P4[AR]: “It gave me the coordinate system right away so I didn’t
have to infer that from robot’s behavior.”

Research has found evidence supporting that icons need
to be supported by text to promote user understanding of its
functionality [53]. Similarly, a clearer representation of spatial
indicators can be developed through labels that clearly convey
what they mean to the user.

B. Visual Clutter
While visualizations can convey meaningful information

to users, too many visual artifacts can quickly inhibit a
user’s understanding of what is being displayed. This issue
is commonly referred to as visual clutter or overdraw and
can decrease information recognition, scene segmentation,
and visual search performance [54]. Our results offer two
suggestions:

1) Mitigate Occluding Visualizations: One RViz user had
an issue of previous paths blocking their view of future ones.

P26[RViz]: “The previous paths are still visible, impeding my ability
to see the current path.”

Similar issues with occluding or cluttered visualizations
occurred when participants coded waypoints with step sizes
smaller than the robot. Since waypoint locations were displayed
on the floor of the scene, future waypoints were sometimes
rendered beneath the robot’s digital twin. This prevented
participants from visualizing the list of waypoints being
traversed by the robot. In one case, this prevented a participant
from realizing waypoint visualizations were a feature being
displayed.

P14[RViz]: “I don’t know if it is possible, but I think it would be
nice to show the next waypoint the Turtlebot is going to move to on
RViz.”

For 2D interfaces, visual clutter is difficult to prevent.
However, solutions from computer graphics could be applied
where the salience of data can be manipulated to direct visual
attention [55], [56]. For example, the path to the next waypoint

can be rendered opaque while the path history can be displayed
using a greater level of transparency as time goes by [29].
Transparent digital twins of the robot can also be used so
that it does not obstruct the view of waypoint visualizations.
Since 3D visualization tools have the ability to re-position
visualizations by traversing the z-axis, future and past paths
can also be displayed at a height that won’t be covered by the
robot.

2) Reducing Print Statements: Another form of visual clutter
in programming can present itself as overload of output print
statements in a terminal. Twenty (83.3%) of the participants
reported using print statements as a form of debugging their
code. While printing variables is an encouraged form of
debugging that can be both quick and informative, multiple
participants valued visualizing the data as opposed to printing
it.

P18[RViz]: “It helped me not need to print as much to the terminal
because I could see what the robot was thinking/doing.”
P20[RViz]: “I needed less print statements which meant that the
terminal filled up slower.”
P5[2D GUI]: “[The visualizations] allowed me to rule out particular
possibilities as to why the robot was not moving. I believe that this
was faster than it would have been if I had to print out particular
data points to locate the reason for my error.”

In particular, while P20 still used print statements, the
participant benefited from seeing the printed output of only
the most relevant information in a less cluttered terminal.

C. Cognitive Load
Cognitive load is defined as a “multidimensional construct

representing the load that performing a particular task imposes
on the learner’s cognitive system” [57]. Naturally, the process
of debugging can involve a high cognitive load varying based
on the user’s experience level [58]. We found three primary
ways visualizations may reduce the mental load and effort that
it takes to understand and fix issues in code.

1) Visual Learning: We found that visualization tools may
be particularly useful for programmers who identify themselves
as visual learners. By seeing data in the context it is meant
to portray, eight (33.3%) of the participants commented they
had an easier time understanding the program without looking
directly at the code.

P26[RViz]: “I am a visual learner, and so the visualizations of path
and targets helped me to connect the software tools to the real world.”
P11[2D GUI]: “I’m a visual learner so this tool definitely made my
thought process easier to work through.”
P10[AR]: “It helped me understand if my code was working without
looking through the code.”

2) Superimposed Visualizations: A key feature of our AR
system is its ability to overlay visualizations in situ in the user’s
real environment. Four (50%) of the AR users specifically noted
the superimposed visualizations reduced their perceived mental
effort when trying to understand spatial relationships.

Session: Robot Learning and Programming HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

201

P9[AR]: “The superimposed graphics made understanding robot
behavior and its operational space very easy.”
P12[AR]: “The biggest aspect I liked was when you could see where
the grid lined up with the robot which is something you don’t get
with traditional RViz when visualizing the grid.”

3) Perspective-Taking: Perspective-taking involves a user’s
ability to understand a robot’s behavior within the context
of the robot’s environment to achieve situational awareness,
thereby improving performance on certain tasks [59], [60]. AR
has improved perspective-taking during teleoperation tasks [7],
and the same may hold true for debugging. Two (25%) of the
AR users commented on frustrations with switching between
the HoloLens and the computer while debugging their code.

P9[AR]: “Debugging with the HoloLens wasn’t as seamless because
I had to keep turning around if I needed to get any information from
the scene. E.g.,: I turned around to view the scene after running my
code for the first task, waiting for the robot to do something, but I
didn’t realize my code had thrown a syntax error which was displayed
in the terminal.”
P10[AR]: When asked what about the tool frustrated them: “Switching
between the HoloLens and back [to the computer].”

Future AR systems may address these issues by embedding a
programming console as an AR window to remove any reliance
on the computer terminal. Other areas of research might look
into naturally embedding errors and warnings within AR. From
another perspective, one experienced RViz user commented
that the most difficult aspects of RViz is moving the camera
around to get different views of the scene. This prevents the
user from viewing the robot from a visually intuitive position,
thereby increasing the chance of errors in perspective-taking.

P6[RViz]: “One thing I don’t like about [RViz], is if you are moving
in a large area, you have to reset the camera and that is always a
pain. It never seems to reset it correctly. It is unnecessarily difficult.”

V. TAKEAWAYS AND O PPORTUNITIES

In this research, we studied how 24 roboticists used one of
three different visualization tools to assist during their coding
and debugging process. From our analysis, we identified three
design guidelines in regards to visual debugging tools. First, a
programmer’s sensemaking process can be aided by intuitive
visualizations that properly encode data. Second, by minimizing
visual clutter, users have an easier time identifying and syn-
thesizing important information. Lastly, debugging interfaces
should be designed to cohesively integrate information from
disparate data streams to reduce cognitive load. One example
of how to apply our findings is to develop context-aware
debugging tools that group visualizations by the task they
inform, rather than providing all the information at once. Such
a design would allow the user to rotate between visualization
groupings that provide only the information relevant to the
category they effect. For instance, engineers debugging self-
driving cars may need feedback on the autonomous decision
making process, such as why a car has stopped. Thus, an

interface might group feedback from the perception system,
highlighting important information within immediate proximity
of the car such as detected stop lights, incoming cars and
pedestrians. This will result in reducing the salience of
irrelevant data.

A. Limitations
While our study provided us with several new insights

for visual debugging systems, we note that our approach is
not without limitations. For example, the tasks in our study,
which replicated the robot tasks in [18], principally involved
localization and navigation. We believe these are representative
of tasks many roboticists encounter at some point in their
career, but note there are many other important robot tasks (e.g.,
manipulation) that future work may examine from a debugging
perspective. We also keep in mind that our choice of robot
platform may have introduced certain biases regarding the
data and visualizations that our participants found helpful (e.g.,
differences might be found with legged platforms). Additionally,
we restricted participants to a 2 hour task time, an artificial
limitation compared with general robotics development and
debugging. Future work might perform longitudinal studies
to examine how tools may support debugging across greater
timescales. While we strove to recruit a diverse set of users,
we ultimately had a majority male sample, reflective of the
current robotics population (e.g., see [61] where only 23
roboticists out of 444 individuals were female). Within our
sample, user experience levels with their assigned debugging
tool varied. Differences in participant experience potentially
affected their performance and subjective feedback, although
such an imbalance is unavoidable given that RViz is the default
visualization tool for ROS. After conducting our study, we
found an error in our RViz condition where we displayed the
robot transform axis rather than the scene origin axis shown
in the other two conditions. This affected user feedback as
described in §IV-A6. Finally, since our thematic analysis was
based solely on subjective feedback from participants, future
work could obtain quantitative data to further back up the
application of our design guidelines.

B. Conclusion
By understanding how design aspects improve user expe-

riences, we have an opportunity to improve the debugging
capabilities of expert roboticists, while also reducing the
barrier to entry for new ones. While this may seem obvious—
after all, the HRI community commonly takes a user-centered
design approach when developing systems for end-users—we
believe it is critical that we start applying these same ideas
when developing our own tools. Our hope is that this initial
exploration will provide a starting point for future research into
the advancement of effective visual development and debugging
tools for roboticists.

VI. ACKNOWLEDGMENT

This work was supported by the NSF under Award # 1764092.
We thank Tom Williams for his help with this work.

Session: Robot Learning and Programming HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

202

R EFERENCES

[1] Michael Walker, Hooman Hedayati, Jennifer Lee, and Daniel Szafir.
Communicating robot motion intent with augmented reality. In Pro-
ceedings of the 2018 ACM/IEEE International Conference on Human-
Robot Interaction, HRI ’18, page 316–324, New York, NY, USA, 2018.
Association for Computing Machinery.

[2] Eric Rosen, David Whitney, Elizabeth Phillips, Gary Chien, James
Tompkin, George Konidaris, and Stefanie Tellex. Communicating Robot
Arm Motion Intent Through Mixed Reality Head-Mounted Displays, pages
301–316. 01 2020.

[3] Fabrizio Ghiringhelli, Alessandro Giusti, Jerome Guzzi, Gianni Di Caro,
Vincenzo Caglioti, and Luca Maria Gambardella. Interactive augmented
reality for understanding and analyzing multi-robot systems. 09 2014.

[4] Tom´ aˇ s Kot and Petr Nov´ ak. Utilization of the oculus rift hmd in mobile
robot teleoperation. In Applied Mechanics and Materials, volume 555,
pages 199–208. Trans Tech Publ, 2014.

[5] Michael E Walker, Hooman Hedayati, and Daniel Szafir. Robot
teleoperation with augmented reality virtual surrogates. In 2019 14th
ACM/IEEE International Conference on Human-Robot Interaction (HRI),
pages 202–210. IEEE, 2019.

[6] Christopher Reardon, Kevin Lee, John G Rogers, and Jonathan Fink.
Augmented reality for human-robot teaming in field environments. In
International Conference on Human-Computer Interaction, pages 79–92.
Springer, 2019.

[7] Hooman Hedayati, Michael Walker, and Daniel Szafir. Improving
collocated robot teleoperation with augmented reality. In Proceedings
of the 2018 ACM/IEEE International Conference on Human-Robot
Interaction, HRI ’18, page 78–86, New York, NY, USA, 2018. Association
for Computing Machinery.

[8] Hyeong Ryeol Kam, Sung-Ho Lee, Taejung Park, and Chang-Hun Kim.
Rviz: a toolkit for real domain data visualization. Telecommunication
Systems, 60(2):337–345, 2015.

[9] Stephen Hart, Paul Dinh, and Kimberly A Hambuchen. Affordance
templates for shared robot control. In 2014 AAAI Fall Symposium Series,
2014.

[10] Sebastian P¨ utz, Thomas Wiemann, and Joachim Hertzberg. Tools for
visualizing, annotating and storing triangle meshes in ros and rviz. In
2019 European Conference on Mobile Robots (ECMR), pages 1–6. IEEE,
2019.

[11] D Chikurtev, I Rangelov, N Chivarov, E Markov, and K Yovchev. Control
of robotic arm manipulator using ros. Bulgarian Academy of Sciences-
Problems of Engineering Cybernetics and Robotics, 69:52–61, 2018.

[12] David Borland and Russell M Taylor II. Rainbow color map (still)
considered harmful. IEEE Computer Architecture Letters, 27(02):14–17,
2007.

[13] Danielle Albers Szafir. The good, the bad, and the biased: Five ways
visualizations can mislead (and how to fix them). Interactions, 25(4):26–
33, 2018.

[14] Safdar Zaman, Wolfgang Slany, and Gerald Steinbauer. Ros-based
mapping, localization and autonomous navigation using a pioneer 3-dx
robot and their relevant issues. In 2011 Saudi International Electronics,
Communications and Photonics Conference (SIECPC), pages 1–5. IEEE,
2011.

[15] Fitria Romadhona Quratul Aini, Agung Nugroho Jati, and Unang Sunarya.
A study of monte carlo localization on robot operating system. In
2016 International Conference on Information Technology Systems and
Innovation (ICITSI), pages 1–6. IEEE, 2016.

[16] Matthew B Luebbers, Connor Brooks, Carl L Mueller, Daniel Szafir, and
Bradley Hayes. Arc-lfd: Using augmented reality for interactive long-
term robot skill maintenance via constrained learning from demonstration.
In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 3794–3800. IEEE, 2021.

[17] Connor Brooks and Daniel Szafir. Visualization of intended assistance for
acceptance of shared control. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 11425–11430. IEEE,
2020.

[18] Toby Collett and Bruce A. MacDonald. An augmented reality debugging
system for mobile robot software engineers. Journal of Software
Engineering for Robotics, 1:18–32, 2010.

[19] DWF Van Krevelen and Ronald Poelman. A survey of augmented reality
technologies, applications and limitations. International journal of virtual
reality, 9(2):1–20, 2010.

[20] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre.
Recent advances in augmented reality. IEEE Computer Graphics and
Applications, 21(6):34–47, 2001.

[21] John P McIntire, Paul R Havig, and Eric E Geiselman. What is 3d good
for? a review of human performance on stereoscopic 3d displays. In
Head-and Helmet-Mounted Displays XVII; and Display Technologies
and Applications for Defense, Security, and Avionics VI, volume 8383,
page 83830X. International Society for Optics and Photonics, 2012.

[22] Michael Sedlmair, Miriah Meyer, and Tamara Munzner. Design study
methodology: Reflections from the trenches and the stacks. IEEE
transactions on visualization and computer graphics, 18(12):2431–2440,
2012.

[23] Michael K¨ olling David J. Barnes. Objects First with Java: A Practical
Introduction Using BlueJ 6. Objects First with Java: A Practical
Introduction Using BlueJ 6th Edition. Pearson, 6th edition, 2016.

[24] Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy,
Kyle Rector, and Scott D. Fleming. How programmers debug, revisited:
An information foraging theory perspective. IEEE Transactions on
Software Engineering, 39(2):197–215, 2013.

[25] Thomas D LaToza and Brad A Myers. Developers ask reachability
questions. In Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages 185–194, 2010.

[26] Mark Weiser. Program slicing. IEEE Transactions on software
engineering, (4):352–357, 1984.

[27] Andrew Ko and Brad Myers. Debugging reinvented. In 2008 ACM/IEEE
30th International Conference on Software Engineering, pages 301–310.
IEEE, 2008.

[28] Jun Kato, Takeo Igarashi, and Masataka Goto. Programming with
examples to develop data-intensive user interfaces. Computer, 49(7):34–
42, 2016.

[29] Daniel Szafir and Danielle Albers Szafir. Connecting human-robot
interaction and data visualization. In Proceedings of the 2021 ACM/IEEE
International Conference on Human-Robot Interaction, pages 281–292,
2021.

[30] Daniel Szafir. Mediating human-robot interactions with virtual, aug-
mented, and mixed reality. In International Conference on Human-
Computer Interaction, pages 124–149. Springer, 2019.

[31] Zhanat Makhataeva and Huseyin Atakan Varol. Augmented reality for
robotics: a review. Robotics, 9(2):21, 2020.

[32] Alan G. Millard, Richard Redpath, Alistair M. Jewers, Charlotte Arndt,
Russell Joyce, James A. Hilder, Liam J. McDaid, and David M. Halliday.
Ardebug: An augmented reality tool for analysing and debugging swarm
robotic systems. Frontiers in Robotics and AI, 5:87, 2018.

[33] Sunao Hashimoto, Akihiko Ishida, Masahiko Inami, and Takeo Igarashi.
Touchme: An augmented reality interface for remote robot control. J.
Robotics Mechatronics, 25(3):529–537, 2013.

[34] Stephanie Ar´ evalo Arboleda, Tim Dierks, Franziska R¨ ucker, and Jens
Gerken. There’s more than meets the eye: Enhancing robot control
through augmented visual cues. In Companion of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, pages 104–106,
2020.

[35] Kyeong-Beom Park, Sung Ho Choi, Jae Yeol Lee, Yalda Ghasemi,
Mustafa Mohammed, and Heejin Jeong. Hands-free human–robot
interaction using multimodal gestures and deep learning in wearable
mixed reality. IEEE Access, 9:55448–55464, 2021.

[36] Hangxin Liu, Yaofang Zhang, Wenwen Si, Xu Xie, Yixin Zhu, and Song-
Chun Zhu. Interactive robot knowledge patching using augmented reality.
In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 1947–1954. IEEE, 2018.

[37] Mark Cheli, Jivko Sinapov, Ethan E. Danahy, and Chris Rogers. Towards
an augmented reality framework for k-12 robotics education. In
Proceedings of the 1st International Workshop on Virtual, Augmented,and
Mixed Reality for HRI, 2018.

[38] St´ ephane Magnenat, Morderchai Ben-Ari, Severin Klinger, and Robert W.
Sumner. Enhancing robot programming with visual feedback and
augmented reality. In Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Education, ITiCSE ’15,
page 153–158, New York, NY, USA, 2015. Association for Computing
Machinery.

[39] Andre Cleaver, Faizan Muhammad, Amel Hassan, Elaine Short, and Jivko
Sinapov. Sensar: A visual tool for intelligent robots for collaborative
human-robot interaction, 2020.

[40] F. Muhammad, A. Hassan, A. Cleaver, and J. Sinapov. Creating a shared
reality with robots. In 2019 14th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pages 614–615, 2019.

[41] Jakob Nielsen. Ten usability heuristics.

Session: Robot Learning and Programming HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

203

[42] Edward Clarkson and Ronald C Arkin. Applying heuristic evaluation
to human-robot interaction systems. In Flairs Conference, pages 44–49,
2007.

[43] Peter Pirolli and Stuart Card. The sensemaking process and leverage
points for analyst technology as identified through cognitive task analysis.
In Proceedings of international conference on intelligence analysis,
volume 5, pages 2–4. McLean, VA, USA, 2005.

[44] Martin Bischoff, David Whitney, and Eric Vollenweider. ros-sharp.
https://github.com/EricVoll/ros-sharp.git, 2017.

[45] Tamara Munzner. Visualization analysis and design. CRC press, 2014.
[46] Virginia Braun and Victoria Clarke. Thematic analysis. 2012.
[47] Daniel M Russell, Mark J Stefik, Peter Pirolli, and Stuart K Card. The

cost structure of sensemaking. In Proceedings of the INTERACT’93
and CHI’93 conference on Human factors in computing systems, pages
269–276, 1993.

[48] Jared A Frank, Matthew Moorhead, and Vikram Kapila. Mobile mixed-
reality interfaces that enhance human–robot interaction in shared spaces.
Frontiers in Robotics and AI, 4:20, 2017.

[49] Dennis Sprute, Klaus T¨ onnies, and Matthias K¨ onig. A study on different
user interfaces for teaching virtual borders to mobile robots. International
Journal of Social Robotics, 11(3):373–388, 2019.

[50] Bang Wong. Color blindness. nature methods, 8(6):441–442, 2011.
[51] Alex T Pang, Craig M Wittenbrink, Suresh K Lodha, et al. Approaches

to uncertainty visualization. The Visual Computer, 13(8):370–390, 1997.
[52] Julian Kardos, Antoni Moore, and George Benwell. Expressing attribute

uncertainty in spatial data using blinking regions. In Proceedings of
the 7th International Symposium on Spatial Accuracy Assessment in
Natural Resources and Environmental Sciences, Lisbon, Portugal, pages
5–7. Citeseer, 2006.

[53] Katherine Haramundanis. Why icons cannot stand alone. ACM SIGDOC
Asterisk Journal of Computer Documentation, 20(2):1–8, 1996.

[54] Ruth Rosenholtz, Yuanzhen Li, and Lisa Nakano. Measuring visual
clutter. Journal of vision, 7(2):17–17, 2007.

[55] Zoya Bylinskii, Nam Wook Kim, Peter O’Donovan, Sami Alsheikh,
Spandan Madan, Hanspeter Pfister, Fredo Durand, Bryan Russell, and
Aaron Hertzmann. Learning visual importance for graphic designs and
data visualizations. In Proceedings of the 30th Annual ACM symposium
on user interface software and technology, pages 57–69, 2017.

[56] Christopher Healey and James Enns. Attention and visual memory in
visualization and computer graphics. IEEE transactions on visualization
and computer graphics, 18(7):1170–1188, 2011.

[57] Fred Paas, Juhani E Tuovinen, Huib Tabbers, and Pascal WM Van Gerven.
Cognitive load measurement as a means to advance cognitive load theory.
Educational psychologist, 38(1):63–71, 2003.

[58] Yu-Tzu Lin, Cheng-Chih Wu, Ting-Yun Hou, Yu-Chih Lin, Fang-Ying
Yang, and Chia-Hu Chang. Tracking students’ cognitive processes during
program debugging—an eye-movement approach. IEEE transactions on
education, 59(3):175–186, 2015.

[59] Jessie YC Chen, Ellen C Haas, and Michael J Barnes. Human
performance issues and user interface design for teleoperated robots. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 37(6):1231–1245, 2007.

[60] M Alejandra Menchaca-Brandan, Andrew M Liu, Charles M Oman, and
Alan Natapoff. Influence of perspective-taking and mental rotation
abilities in space teleoperation. In Proceedings of the ACM/IEEE
International Conference on Human-robot interaction, pages 271–278,
2007.

[61] Matt McFarland. Darpa’s robotics challenge has a gender problem, Apr
2019.

Session: Robot Learning and Programming HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

204

